- 目錄
-
第1篇考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié) 第2篇2023年大學(xué)高數(shù)學(xué)習(xí)方法總結(jié) 第3篇2023年在職gct數(shù)學(xué)復(fù)習(xí)備考之高數(shù)精華總結(jié) 第4篇最新考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié) 第5篇2023年考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié) 第6篇2023考研數(shù)學(xué)沖刺 高數(shù)精華總結(jié) 第7篇2023考研數(shù)學(xué)高數(shù)三23個(gè)高頻考點(diǎn)總結(jié) 第8篇2023考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié) 第9篇2023考研數(shù)學(xué)高數(shù)重要知識(shí)點(diǎn)總結(jié) 第10篇15年大學(xué)高數(shù)教學(xué)總結(jié) 第11篇大一第一學(xué)期高數(shù)總結(jié)
【第1篇 考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
1.函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。
2.一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
3.一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的`計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4.向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
5.多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
6.多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
7.無窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。
8.常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
【第2篇 2023年大學(xué)高數(shù)學(xué)習(xí)方法總結(jié)
一提起“數(shù)學(xué)”課,大家都會(huì)覺得再熟悉不過了,從小學(xué)一直到高中,它幾乎就是一門陪伴著我們成長的學(xué)科。然而即使有著大學(xué)之前近XX年的數(shù)學(xué)學(xué)習(xí)生涯,仍然會(huì)有很多同學(xué)在初學(xué)大學(xué)數(shù)學(xué)時(shí)遇到很多困惑與疑問,更可能會(huì)有一種摸不著頭腦的感覺。那么,究竟應(yīng)該如何在大學(xué)中學(xué)好高數(shù)呢?
在中學(xué)的時(shí)候,可能許多同學(xué)都比較喜歡學(xué)習(xí)數(shù)學(xué),而且數(shù)學(xué)成績也很優(yōu)秀,因而這時(shí)是處于一種良性循環(huán)的狀態(tài),不會(huì)有太多的挫敗感,因而也就不會(huì)太在意勇于面對(duì)的重要性。而剛一進(jìn)入大學(xué),由于理論體系的截然不同,我們會(huì)在學(xué)習(xí)開始階段遇到不小的麻煩,甚至?xí)胁蝗缫獾慕Y(jié)果出現(xiàn),這時(shí)就一定得堅(jiān)持住,能夠知難而進(jìn),繼續(xù)跟隨老師學(xué)習(xí)。
很多同學(xué)在剛?cè)雽W(xué)不久,就是一直感覺很暈。對(duì)于上課老師所講的知識(shí),雖然表面上能聽懂,但卻不明白知識(shí)背后的真正原因,所以總是感覺學(xué)到的東西不實(shí)在。至于做題就更差勁了,“吉米多維奇”上的習(xí)題根本不敢去看,因?yàn)闀系恼n后習(xí)題都沒幾個(gè)會(huì)做的。這確實(shí)與高中的情形相差太大了,香港浸會(huì)大學(xué)的楊濤教授曾經(jīng)在一次講座中講過:“在初學(xué)高數(shù)時(shí)感覺暈是很正常的,而且還得再暈幾個(gè)月可能就好了?!彼躁P(guān)鍵是不要放棄,初學(xué)者必須要克服這個(gè)困難才能學(xué)好大學(xué)理論知識(shí)。除了要堅(jiān)持外,還要注意不要在某些問題的解決上花費(fèi)過多的時(shí)間。因?yàn)榇髮W(xué)數(shù)學(xué)理論十分嚴(yán)謹(jǐn),教科書在講解初步知識(shí)時(shí),有時(shí)會(huì)不可避免地用到一些以后才能學(xué)到的理論思想,因而在初步學(xué)習(xí)時(shí)就對(duì)著這種問題不放是十分不劃算的。
所以,在開始學(xué)習(xí)數(shù)學(xué)時(shí),可以考慮采取迂回的學(xué)習(xí)方式。先把那些一時(shí)難以想通的問題記下,轉(zhuǎn)而繼續(xù)學(xué)習(xí)后續(xù)知識(shí),然后不時(shí)地回頭復(fù)習(xí),在復(fù)習(xí)時(shí)由于后面知識(shí)的積累就可能會(huì)想通以前遺留的問題,進(jìn)而又能促進(jìn)后面知識(shí)的深刻理解。這種迂回式的學(xué)習(xí)方法,使得溫故不但能知新,而且還能更好地知故。
【第3篇 2023年在職gct數(shù)學(xué)復(fù)習(xí)備考之高數(shù)精華總結(jié)
1,幾個(gè)易混概念:連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系式怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
2,羅爾定理:設(shè)函數(shù)f(_)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得f´(ξ)=0。羅爾定理是以法國數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個(gè)已知條件的意義,⒈f(_)在[a,b]上連續(xù)表明曲線連同端點(diǎn)在內(nèi)是無縫隙的曲線;⒉f(_)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(_)在每一點(diǎn)處有切線存在;⒊f(a)=f(b)表明曲線的割線(直線ab)平行于_軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f´(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線ab,與_軸平行
3,應(yīng)用多次中值定理的專題:大部分的考研題,一般要考察你應(yīng)用多次中值定理,最重要的就是要培養(yǎng)自己對(duì)這種題目的敏感度,要很快反映老師出這題考哪幾個(gè)中值定理,我的敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來的。我會(huì)經(jīng)常會(huì)去復(fù)習(xí),那樣我對(duì)中值定理的題目早已沒有那種剛學(xué)高數(shù)時(shí)的害怕之極。要想對(duì)微分中值定理這塊的題目有條理的掌握,看我這個(gè)總結(jié)定會(huì)事半功倍的。
4,泰勒公式展開的應(yīng)用專題:我以前,以及我所有的同學(xué),看到泰勒公式就哆嗦,因?yàn)檎σ豢春荛L很恐怖,瞬間大腦空白,身體失重的感覺。其實(shí)在我搞明白一下幾點(diǎn)后,原來的癥狀就沒有了。第一:什么情況下要進(jìn)行泰勒展開;第二:以哪一點(diǎn)為中心進(jìn)行展開;第三:把誰展開;第四:展開到幾階?
5,對(duì)稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識(shí),但是往往不是那么容易就靠做3,4個(gè)題目就能了解這知識(shí)點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現(xiàn),因?yàn)槟阕龀鰜砹艘詾橐院缶鸵欢〞?huì)在相似的題目中用,其實(shí)不然,因?yàn)閮H僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時(shí)候或許就是考場上了,你可能頓時(shí)苦思冥想,最終還是選擇了最傻的辦法,浪費(fèi)了寶貴時(shí)間。說這些其實(shí)就是說明,考場上的正常或超常發(fā)揮是建立在平時(shí)踏實(shí)做,見識(shí)廣,嚴(yán)要求的基礎(chǔ)上。
【第4篇 最新考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
最新考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
1.函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。
2.一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
3.一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的'計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4.向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
5.多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
6.多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
7.無窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。
8.常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
【第5篇 2023年考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
1.函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。
2.一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
3.一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4.向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
5.多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
6.多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
7.無窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。
8.常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
【第6篇 2023考研數(shù)學(xué)沖刺 高數(shù)精華總結(jié)
考研數(shù)學(xué)令許多考生感到頭疼,而高數(shù)是最令人痛恨的課程,但這部分很重要。希望大家還是要努力復(fù)習(xí),爭取讓數(shù)學(xué)給自己加分,而不是拖后腿。下面給大家總結(jié)一些高數(shù)的復(fù)習(xí)精華,希望能給大家?guī)硇椭?/p>
1,幾個(gè)易混概念:連續(xù),可導(dǎo),存在原函數(shù),可積,可微,偏導(dǎo)數(shù)存在他們之間的關(guān)系式怎么樣的?存在極限,導(dǎo)函數(shù)連續(xù),左連續(xù),右連續(xù),左極限,右極限,左導(dǎo)數(shù),右導(dǎo)數(shù),導(dǎo)函數(shù)的左極限,導(dǎo)函數(shù)的右極限。
2,羅爾定理:設(shè)函數(shù)f(_)在閉區(qū)間[a,b]上連續(xù)(其中a不等于b),在開區(qū)間(a,b)上可導(dǎo),且f(a)=f(b),那么至少存在一點(diǎn)ξ∈(a、b),使得 f'(ξ)=0.羅爾定理是以法國數(shù)學(xué)家羅爾的名字命名的。羅爾定理的三個(gè)已知條件的意義,⒈f(_)在[a,b]上連續(xù)表明曲線連同端點(diǎn)在內(nèi)是無縫隙的曲線;⒉f(_)在內(nèi)(a,b)可導(dǎo)表明曲線y=f(_)在每一點(diǎn)處有切線存在;⒊f(a)=f(b)表明曲線的割線(直線ab)平行于_軸;羅爾定理的結(jié)論的直幾何意義是:在(a,b)內(nèi)至少能找到一點(diǎn)ξ,使f'(ξ)=0,表明曲線上至少有一點(diǎn)的切線斜率為0,從而切線平行于割線ab,與_軸平行
3,應(yīng)用多次中值定理的專題:大部分的考研題,一般要考察你應(yīng)用多次中值定理,最重要的就是要培養(yǎng)自己對(duì)這種題目的敏感度,要很快反映老師出這題考哪幾個(gè)中值定理,我的敏感性是靠自己多練習(xí)綜合題培養(yǎng)出來的。我會(huì)經(jīng)常會(huì)去復(fù)習(xí),那樣我對(duì)中值定理的題目早已沒有那種剛學(xué)高數(shù)時(shí)的害怕之極。要想對(duì)微分中值定理這塊的題目有條理的掌握,看我這個(gè)總結(jié)定會(huì)事半功倍的。
4,泰勒公式展開的應(yīng)用專題:我以前,以及我所有的同學(xué),看到泰勒公式就哆嗦,因?yàn)檎σ豢春荛L很恐怖,瞬間大腦空白,身體失重的感覺。其實(shí)在我搞明白一下幾點(diǎn)后,原來的癥狀就沒有了。第一:什么情況下要進(jìn)行泰勒展開;第二:以哪一點(diǎn)為中心進(jìn)行展開;第三:把誰展開;第四:展開到幾階?
5,對(duì)稱性,輪換性,奇偶性在積分(重積分,線,面積分)中的綜合應(yīng)用:這幾乎每年必考,要么小題中考,要么大題中要用,這是必須掌握的知識(shí),但是往往不是那么容易就靠做3,4個(gè)題目就能了解這知識(shí)點(diǎn)的應(yīng)用到底有多廣泛。我們做積分題,尤其多重積分和線面積分,死算也許能算出結(jié)果,但是要是能用以上性質(zhì),那可真是三下五除二搞定,這方面的感覺相信大家有過,可是或許僅僅是曇花一現(xiàn),因?yàn)槟阕龀鰜砹艘詾橐院缶鸵欢〞?huì)在相似的題目中用,其實(shí)不然,因?yàn)閮H僅靠幾道題目很大程度上不能給你留下太深刻的印象,下次輪到的時(shí)候或許就是考場上了,你可能頓時(shí)苦思冥想,最終還是選擇了最傻的辦法,浪費(fèi)了寶貴時(shí)間。說這些其實(shí)就是說明,考場上的正常或超常發(fā)揮是建立在平時(shí)踏實(shí)做,見識(shí)廣,嚴(yán)要求的基礎(chǔ)上。
【第7篇 2023考研數(shù)學(xué)高數(shù)三23個(gè)高頻考點(diǎn)總結(jié)
數(shù)學(xué)(三)23個(gè)高頻考點(diǎn):
(1)曲線的漸近線;
(2)某點(diǎn)處的高階導(dǎo)數(shù);
(3)化極坐標(biāo)系下的二次積分為直角坐標(biāo)系下的二次積分;
(4)函數(shù)不等式的證明;
(5)微分方程、變限積分函數(shù)、拐點(diǎn);
(6)含參數(shù)的方程組;
(7)數(shù)項(xiàng)級(jí)數(shù)斂散性的判定;
(8)向量組的線性相關(guān)性;
(9)未定式的極限;
(10)無界區(qū)域上的二重積分;
(11)二維均勻分布;
(12)統(tǒng)計(jì)量的常見分布;
(13)未定式的極限;
(14)分段函數(shù)的復(fù)合函數(shù)的導(dǎo)數(shù);
(15)二元函數(shù)全微分的定義;
(16)多元函數(shù)微分學(xué)的經(jīng)濟(jì)應(yīng)用,條件極值;
(17)利用正交變換化二次型為標(biāo)準(zhǔn)形;
(18)二維離散型隨機(jī)變量的概率、數(shù)字特征;
(19)二維常見分布的隨機(jī)變量函數(shù)的分布、數(shù)字特征;
(20)初等變換與初等矩陣;
(21)平面圖形的面積;
(22)初等變換、伴隨矩陣、抽象行列式的計(jì)算;
(23)隨機(jī)事件的概率。
【第8篇 2023考研高數(shù)8大重要知識(shí)點(diǎn)總結(jié)
新東方在線推薦:2023年考研一次順利課程??!一科不過,全科免費(fèi)
1.函數(shù)、極限與連續(xù)
重點(diǎn)考查極限的計(jì)算、已知極限確定原式中的未知參數(shù)、函數(shù)連續(xù)性的討論、間斷點(diǎn)類型的判斷、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)、確定方程在給定區(qū)間上有無實(shí)根。
2.一元函數(shù)微分學(xué)
重點(diǎn)考查導(dǎo)數(shù)與微分的定義、函數(shù)導(dǎo)數(shù)與微分的計(jì)算(包括隱函數(shù)求導(dǎo))、利用洛比達(dá)法則求不定式極限、函數(shù)極值與最值、方程根的個(gè)數(shù)、函數(shù)不等式的證明、與中值定理相關(guān)的證明、在物理和經(jīng)濟(jì)等方面的實(shí)際應(yīng)用、曲線漸近線的求法。
3.一元函數(shù)積分學(xué)
重點(diǎn)考查不定積分的計(jì)算、定積分的計(jì)算、廣義積分的計(jì)算及判斂、變上限函數(shù)的求導(dǎo)和極限、利用積分中值定理和積分性質(zhì)的證明、定積分的幾何應(yīng)用和物理應(yīng)用。
4.向量代數(shù)與空間解析幾何(數(shù)一)
主要考查向量的運(yùn)算、平面方程和直線方程及其求法、平面與平面、平面與直線、直線與直線之間的夾角,并會(huì)利用平面、直線的相互關(guān)系(平行、垂直、相交等))解決有關(guān)問題等,該部分一般不單獨(dú)考查,主要作為曲線積分和曲面積分的基礎(chǔ)。
5.多元函數(shù)微分學(xué)
重點(diǎn)考查多元函數(shù)極限存在、連續(xù)性、偏導(dǎo)數(shù)存在、可微分及偏導(dǎo)連續(xù)等問題、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)求法、有條件極值和無條件極值。另外,數(shù)一還要求掌握方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
6.多元函數(shù)積分學(xué)
重點(diǎn)考查二重積分在直角坐標(biāo)和極坐標(biāo)下的計(jì)算、累次積分、積分換序。此外,數(shù)一還要求掌握三重積分的計(jì)算、兩類曲線積分和兩種曲面積分的計(jì)算、格林公式、高斯公式及斯托克斯公式。
7.無窮級(jí)數(shù)(數(shù)一、數(shù)三)
重點(diǎn)考查正項(xiàng)級(jí)數(shù)的基本性質(zhì)和斂散性判別、一般項(xiàng)級(jí)數(shù)絕對(duì)收斂和條件收斂的判別、冪級(jí)數(shù)收斂半徑、收斂域及和函數(shù)的求法以及冪級(jí)數(shù)在特定點(diǎn)的展開問題。
8.常微分方程及差分方程
重點(diǎn)考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。此外,數(shù)三考查差分方程的基本概念與一介常系數(shù)線形方程求解方法。數(shù)一還要求會(huì)伯努利方程、歐拉公式等。
【第9篇 2023考研數(shù)學(xué)高數(shù)重要知識(shí)點(diǎn)總結(jié)
閱讀!
1.函數(shù)、極限與連續(xù):主要考查極限的計(jì)算或已知極限確定原式中的常數(shù)、討論函數(shù)連續(xù)性和判斷間斷點(diǎn)類型、無窮小階的比較、討論連續(xù)函數(shù)在給定區(qū)間上零點(diǎn)的個(gè)數(shù)或確定方程在給定區(qū)間上有無實(shí)根。
2.一元函數(shù)微分學(xué):主要考查導(dǎo)數(shù)與微分的定義、各種函數(shù)導(dǎo)數(shù)與微分的計(jì)算、利用洛比達(dá)法則求不定式極限、函數(shù)極值、方程的的個(gè)數(shù)、證明函數(shù)不等式、與中值定理相關(guān)的證明、值、最小值在物理、經(jīng)濟(jì)等方面實(shí)際應(yīng)用、用導(dǎo)數(shù)研究函數(shù)性態(tài)和描繪函數(shù)圖形、求曲線漸近線。
3.一元函數(shù)積分學(xué):主要考查不定積分、定積分及廣義積分的計(jì)算、變上限積分的求導(dǎo)、極限等、積分中值定理和積分性質(zhì)的證明、定積分的應(yīng)用,如計(jì)算旋轉(zhuǎn)面面積、旋轉(zhuǎn)體體積、變力作功等。
4.多元函數(shù)微分學(xué):主要考查偏導(dǎo)數(shù)存在、可微、連續(xù)的判斷、多元函數(shù)和隱函數(shù)的一階、二階偏導(dǎo)數(shù)、多元函數(shù)極值或條件極值在與經(jīng)濟(jì)上的應(yīng)用、二元連續(xù)函數(shù)在有界平面區(qū)域上的值和最小值。此外,數(shù)學(xué)一還要求會(huì)計(jì)算方向?qū)?shù)、梯度、曲線的切線與法平面、曲面的切平面與法線。
5.多元函數(shù)的積分學(xué):包括二重積分在各種坐標(biāo)下的計(jì)算,累次積分交換次序。數(shù)一還要求掌握三重積分,曲線積分和曲面積分以及相關(guān)的重要公式。
6.微分方程及差分方程:主要考查一階微分方程的通解或特解、二階線性常系數(shù)齊次和非齊次方程的特解或通解、微分方程的建立與求解。差分方程的基本概念與一介常系數(shù)線形方程求解方法
希望同學(xué)們?cè)跍?zhǔn)備考研數(shù)學(xué)高數(shù)的復(fù)習(xí)過程中能夠適當(dāng)結(jié)合真題與模擬題,通過具體的題型來記憶高數(shù)相關(guān)知識(shí)點(diǎn),在記憶理論基礎(chǔ)知識(shí)的同時(shí)將具體解題技巧也收入囊中。同時(shí)建議條件允許的同學(xué)報(bào)一個(gè)輔導(dǎo)班,利用里面的師資來確保復(fù)習(xí)效率。最后,衷心祝愿同學(xué)們都能夠成功考取自己理想中的大學(xué)。
【第10篇 15年大學(xué)高數(shù)教學(xué)總結(jié)
本學(xué)期我擔(dān)任本科金融專業(yè)的高等數(shù)學(xué)教學(xué)工作,一學(xué)期來,我自始至終以認(rèn)真、嚴(yán)謹(jǐn)?shù)闹螌W(xué)態(tài)度,勤懇、堅(jiān)持不懈的精神從事教學(xué)工作。作為任課教師,我能認(rèn)真制定計(jì)劃,注重教學(xué)理論,認(rèn)真?zhèn)湔n和教學(xué),積極參加教研組活動(dòng)和學(xué)校教研活動(dòng),上好每一節(jié)課,并能經(jīng)常聽各位優(yōu)秀老師的課,從中吸取教學(xué)經(jīng)驗(yàn),取長補(bǔ)短,提高自己的教學(xué)的業(yè)務(wù)水平。還注意多方面、多角度去培養(yǎng)學(xué)生的分析能力。
現(xiàn)將本學(xué)期的教育教學(xué)工作總結(jié)如下:
(一)主要工作:
一、加強(qiáng)師德修養(yǎng),提高道德素質(zhì) 過去的一個(gè)學(xué)期中,我認(rèn)真加強(qiáng)師德修養(yǎng),提高道德素質(zhì)。認(rèn)真學(xué)習(xí)教育法律法規(guī),嚴(yán)格按照有事業(yè)心、有責(zé)任心、有上進(jìn)心、愛校、愛崗、愛生、團(tuán)結(jié)協(xié)作、樂于奉獻(xiàn)、勇于探索、積極進(jìn)取的要求去規(guī)范自己的行為。對(duì)待學(xué)生做到:民主平等,公正合理,嚴(yán)格要求,耐心教導(dǎo);對(duì)待同事做到:團(tuán)結(jié)協(xié)作、互相尊重、友好相處;對(duì)待自己做到:嚴(yán)于律已、以身作則、為人師表。
二、加強(qiáng)教育教學(xué)理論學(xué)習(xí)
能積極投入到課改的實(shí)踐探索中,認(rèn)真學(xué)習(xí),加快教育、教學(xué)方法的研究,更新教育觀念,掌握教學(xué)改革的方式方法,提高了駕馭課程的能力。
三、教學(xué)工作
在教學(xué)中,我大膽探索適合于學(xué)生發(fā)展的教學(xué)方法。為了教學(xué)質(zhì)量,我做了下面的工作:
1、認(rèn)真?zhèn)浜谜n。
①認(rèn)真學(xué)習(xí)鉆研教材。了解教材的基本思想、基本概念、結(jié)構(gòu)、重點(diǎn)與難點(diǎn),掌握知識(shí)的邏輯。多方參閱各種資料,力求深入理解教材,準(zhǔn)確把握難重點(diǎn)。
②了解學(xué)生原有的知識(shí)技能的質(zhì)量,他們的興趣、需要、方法、習(xí)慣,學(xué)習(xí)新知識(shí)可能會(huì)有哪些困難,采取相應(yīng)的措施。
2、堅(jiān)持堅(jiān)持學(xué)生為主體,向50分鐘課堂教學(xué)要質(zhì)量。精心組織好課堂教學(xué),關(guān)注全體學(xué)生,堅(jiān)持學(xué)生為主體,注意信息反饋,調(diào)動(dòng)學(xué)生的注意力,使其保持相對(duì)穩(wěn)定性。同時(shí),激發(fā)學(xué)生的情感,針對(duì)大一學(xué)生特點(diǎn),以愉快式教學(xué)為主,不搞滿堂灌,堅(jiān)持學(xué)生為主體,注重講練結(jié)合。在教學(xué)中注意抓住重點(diǎn),突破難點(diǎn)。
3、認(rèn)真批改作業(yè)。
在作業(yè)批改上,做到認(rèn)真及時(shí),重在訂正,及時(shí)反饋。
(二)存在問題
由于我是一名年輕教師,對(duì)教材的熟悉程度以及在教學(xué)經(jīng)驗(yàn)上還很欠缺。因此在教學(xué)過程中有時(shí)會(huì)出現(xiàn)一些問題。除此之外,現(xiàn)在注重考察的是學(xué)生應(yīng)用知識(shí)的能力,但由于以前的教學(xué)模式,學(xué)生的這種能力培養(yǎng)還很弱,以后還需加強(qiáng)這方面的培養(yǎng)。
(三)今后努力的方向
1、加強(qiáng)學(xué)習(xí),學(xué)習(xí)新的教學(xué)思想。
2、挖掘教材,進(jìn)一步把握知識(shí)點(diǎn)和考點(diǎn)。
3、多聽課,學(xué)習(xí)同科目教師先進(jìn)的教學(xué)方法的教學(xué)理念。
4、加強(qiáng)轉(zhuǎn)差培優(yōu)力度。
5、讓學(xué)生具有良好的數(shù)學(xué)思維。
一份耕耘,一份收獲,教學(xué)工作苦樂相伴。在以后的教學(xué)工作中,我要不斷總結(jié)經(jīng)驗(yàn),力求提高自己的教學(xué)水平,還要多下功夫加強(qiáng)對(duì)個(gè)別差生的輔導(dǎo),相信一切問題都會(huì)迎刃而解,我也相信有耕耘總會(huì)有收獲!
【第11篇 大一第一學(xué)期高數(shù)總結(jié)
轉(zhuǎn)眼間,大一已經(jīng)過去一半了,高數(shù)學(xué)習(xí)也有了一個(gè)學(xué)期了,仔細(xì)一想高數(shù)也不是傳說的那么可怕,當(dāng)然也沒有那么容易。
有人說,高數(shù)是一棵高數(shù),很多人掛在了上面。但是,只要努力,就能爬上這棵高樹,憑借它的高度,便能看到更遠(yuǎn)的風(fēng)景。
首先,不能有畏難情緒。一進(jìn)大學(xué),就聽到很多師兄師姐甚至老師說高數(shù)很難學(xué),有很多人掛科了。這基本上是事實(shí),但是或多或少夸張了點(diǎn)吧。事實(shí)上,當(dāng)我們拋掉那些畏難情緒,心無旁騖的學(xué)習(xí)高數(shù)時(shí),他并不是那么難,至少不是那種難到學(xué)不下去的。所以我們要有信心去學(xué)好它,有好大學(xué)的第一步。
其次,課前預(yù)習(xí)很重要。每個(gè)人學(xué)習(xí)習(xí)慣不同,有些人習(xí)慣預(yù)習(xí),有些人覺得預(yù)習(xí)不適合自己。每次上課前,把課本上的內(nèi)容仔細(xì)地預(yù)習(xí)一下,或者說先自學(xué)一下,把知識(shí)點(diǎn)先過一遍,能理解的自己先理解好,到課堂上時(shí)就會(huì)覺得有方向感,不會(huì)覺得茫然,并且自己預(yù)習(xí)時(shí)沒有理解的地方在課堂上聽老師講后就能解決了,比較有針對(duì)性。
然后,要把握課堂。課堂上老師講的每一句話都是有可能是很有用的,如果錯(cuò)過了就可能會(huì)使自己以后做某些習(xí)題時(shí)要走很多彎路,甚至是死路。我們主要應(yīng)該在課堂上認(rèn)真聽講,理解解題方法,我們現(xiàn)在需要的是方法,是思維,而不是僅僅是例題本身的答案。我們學(xué)習(xí)高數(shù)不是為了將來能計(jì)算算數(shù),而是為了獲得一種思想,為了提高我們的思維能力,為了能夠用于解決現(xiàn)實(shí)問題。此外,要以教材為中心。雖說“盡信書,不如無書”,但是,就算教材不是完美的,但是教材上包含了我們所要掌握的知識(shí)點(diǎn),而那些知識(shí)點(diǎn),便是我們解題的基礎(chǔ)。書上的一些基本公式、定理,是我們必須掌握的。
最后,堅(jiān)持做好習(xí)題。做題是必要的,但像高中那樣搞題海戰(zhàn)術(shù)就不必要了。做好教材上的課后習(xí)題和習(xí)題冊(cè)就足夠了,當(dāng)然,前提是認(rèn)真地做好了。對(duì)于每一道題,有疑問的地方就要解決,不能不求甚解,盡量把每一個(gè)細(xì)節(jié)都理解好,這樣的話,做好一題,就能解決很多類型的題了。
下面是我對(duì)這學(xué)期的'學(xué)習(xí)重點(diǎn)的一些總結(jié):
一、函數(shù)
1.判斷兩個(gè)函數(shù)是否相同
一個(gè)函數(shù)相同的確定取決于其定義域和對(duì)應(yīng)關(guān)系的確定,因此判斷兩個(gè)函數(shù)是否相同必須判斷其定義域是否相同,且要判斷表達(dá)式是否同意即可。 2.判斷函數(shù)奇偶性
判斷函數(shù)的奇偶性,主要的方法就是利用定義,其次是利用奇偶的性質(zhì),即奇(偶)函數(shù)之和還是奇(偶)函數(shù);兩個(gè)奇函數(shù)積是偶函數(shù);兩個(gè)偶函數(shù)之積仍是偶函數(shù);一積一偶之積是奇函數(shù)。
3.求極限的方法
利用極限的四則運(yùn)算法則、性質(zhì)以及已知的極限求極限。
4.判斷函數(shù)的連續(xù)性
二、導(dǎo)數(shù)
1.求顯函數(shù)導(dǎo)數(shù);
2.求隱函數(shù)導(dǎo)數(shù);
3.“取對(duì)數(shù)求導(dǎo)法”;
4.求由參數(shù)方程所表達(dá)的函數(shù)的導(dǎo)數(shù);
5.求函數(shù)微分;
三、基本初等函數(shù)求導(dǎo)公式
四、基本積分公式
五、常用積分公式