歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(四篇)

發(fā)布時(shí)間:2023-03-12 08:03:09 查看人數(shù):90

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)

【第1篇 2023高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):指數(shù)函數(shù)、函數(shù)奇偶性

指數(shù)函數(shù)

(1)指數(shù)函數(shù)的定義域?yàn)樗袑?shí)數(shù)的集合,這里的前提是a大于0,對(duì)于a不大于0的情況,則必然使得函數(shù)的定義域不存在連續(xù)的區(qū)間,因此我們不予考慮。

(2)指數(shù)函數(shù)的值域?yàn)榇笥?的實(shí)數(shù)集合。

(3)函數(shù)圖形都是下凹的。

(4)a大于1,則指數(shù)函數(shù)單調(diào)遞增;a小于1大于0,則為單調(diào)遞減的。

(5)可以看到一個(gè)顯然的規(guī)律,就是當(dāng)a從0趨向于無(wú)窮大的過(guò)程中(當(dāng)然不能等于0),函數(shù)的曲線從分別接近于y軸與_軸的正半軸的單調(diào)遞減函數(shù)的位置,趨向分別接近于y軸的正半軸與_軸的負(fù)半軸的單調(diào)遞增函數(shù)的位置。其中水平直線y=1是從遞減到遞增的一個(gè)過(guò)渡位置。

(6)函數(shù)總是在某一個(gè)方向上無(wú)限趨向于_軸,永不相交。

(7)函數(shù)總是通過(guò)(0,1)這點(diǎn)。

(8)顯然指數(shù)函數(shù)無(wú)界。

奇偶性

注圖:(1)為奇函數(shù)(2)為偶函數(shù)

定義

一般地,對(duì)于函數(shù)f(_)

(1)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)_,都有f(-_)=-f(_),那么函數(shù)f(_)就叫做奇函數(shù)。

(2)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)_,都有f(-_)=f(_),那么函數(shù)f(_)就叫做偶函數(shù)。

(3)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)_,f(-_)=-f(_)與f(-_)=f(_)同時(shí)成立,那么函數(shù)f(_)既是奇函數(shù)又是偶函數(shù),稱為既奇又偶函數(shù)。

(4)如果對(duì)于函數(shù)定義域內(nèi)的任意一個(gè)_,f(-_)=-f(_)與f(-_)=f(_)都不能成立,那么函數(shù)f(_)既不是奇函數(shù)又不是偶函數(shù),稱為非奇非偶函數(shù)。

說(shuō)明:①奇、偶性是函數(shù)的整體性質(zhì),對(duì)整個(gè)定義域而言

②奇、偶函數(shù)的定義域一定關(guān)于原點(diǎn)對(duì)稱,如果一個(gè)函數(shù)的定義域不關(guān)于原點(diǎn)對(duì)稱,則這個(gè)函數(shù)一定不是奇(或偶)函數(shù)。

(分析:判斷函數(shù)的奇偶性,首先是檢驗(yàn)其定義域是否關(guān)于原點(diǎn)對(duì)稱,然后再嚴(yán)格按照奇、偶性的定義經(jīng)過(guò)化簡(jiǎn)、整理、再與f(_)比較得出結(jié)論)

③判斷或證明函數(shù)是否具有奇偶性的根據(jù)是定義

【第2篇 2023高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):對(duì)數(shù)函數(shù)性質(zhì)與定義

對(duì)數(shù)函數(shù)的一般形式為,它實(shí)際上就是指數(shù)函數(shù)的反函數(shù)。因此指數(shù)函數(shù)里對(duì)于a的規(guī)定,同樣適用于對(duì)數(shù)函數(shù)。

右圖給出對(duì)于不同大小a所表示的函數(shù)圖形:

可以看到對(duì)數(shù)函數(shù)的圖形只不過(guò)的指數(shù)函數(shù)的圖形的關(guān)于直線y=_的對(duì)稱圖形,因?yàn)樗鼈兓榉春瘮?shù)。

(1)對(duì)數(shù)函數(shù)的定義域?yàn)榇笥?的實(shí)數(shù)集合。

(2)對(duì)數(shù)函數(shù)的值域?yàn)槿繉?shí)數(shù)集合。

(3)函數(shù)總是通過(guò)(1,0)這點(diǎn)。

(4)a大于1時(shí),為單調(diào)遞增函數(shù),并且上凸;a小于1大于0時(shí),函數(shù)為單調(diào)遞減函數(shù),并且下凹。

(5)顯然對(duì)數(shù)函數(shù)無(wú)界。

【第3篇 2023高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):一次函數(shù)

一、定義與定義式:

自變量_和因變量y有如下關(guān)系:

y=k_+b

則此時(shí)稱y是_的一次函數(shù)。

特別地,當(dāng)b=0時(shí),y是_的正比例函數(shù)。

即:y=k_(k為常數(shù),k≠0)

二、一次函數(shù)的性質(zhì):

1.y的變化值與對(duì)應(yīng)的_的變化值成正比例,比值為k

即:y=k_+b(k為任意不為零的實(shí)數(shù)b取任何實(shí)數(shù))

2.當(dāng)_=0時(shí),b為函數(shù)在y軸上的截距。

三、一次函數(shù)的圖像及性質(zhì):

1.作法與圖形:通過(guò)如下3個(gè)步驟

(1)列表;

(2)描點(diǎn);

(3)連線,可以作出一次函數(shù)的圖像——一條直線。因此,作一次函數(shù)的圖像只需知道2點(diǎn),并連成直線即可。(通常找函數(shù)圖像與_軸和y軸的交點(diǎn))

2.性質(zhì):(1)在一次函數(shù)上的任意一點(diǎn)p(_,y),都滿足等式:y=k_+b。(2)一次函數(shù)與y軸交點(diǎn)的坐標(biāo)總是(0,b),與_軸總是交于(-b/k,0)正比例函數(shù)的圖像總是過(guò)原點(diǎn)。

【第4篇 2023高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié):集合知識(shí)點(diǎn)匯總

一.知識(shí)歸納:

1.集合的有關(guān)概念。

1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素

注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出的,這與平面幾何中的點(diǎn)與直線的概念類似。

②集合中的元素具有確定性(a?a和a?a,二者必居其一)、互異性(若a?a,b?a,則a≠b)和無(wú)序性({a,b}與{b,a}表示同一個(gè)集合)。

③集合具有兩方面的意義,即:凡是符合條件的對(duì)象都是它的元素;只要是它的元素就必須符號(hào)條件

2)集合的表示方法:常用的有列舉法、描述法和圖文法

3)集合的分類:有限集,無(wú)限集,空集。

4)常用數(shù)集:n,z,q,r,n_

2.子集、交集、并集、補(bǔ)集、空集、全集等概念。

1)子集:若對(duì)_∈a都有_∈b,則a b(或a b);

2)真子集:a b且存在_0∈b但_0 a;記為a b(或,且 )

3)交集:a∩b={_| _∈a且_∈b}

4)并集:a∪b={_| _∈a或_∈b}

5)補(bǔ)集:cua={_| _ a但_∈u}

注意:①? a,若a≠?,則? a ;

②若, ,則 ;

③若且 ,則a=b(等集)

3.弄清集合與元素、集合與集合的關(guān)系,掌握有關(guān)的術(shù)語(yǔ)和符號(hào),特別要注意以下的符號(hào):(1) 與、?的區(qū)別;(2) 與 的區(qū)別;(3) 與 的區(qū)別。

4.有關(guān)子集的幾個(gè)等價(jià)關(guān)系

①a∩b=a a b;②a∪b=b a b;③a b c ua c ub;

④a∩cub = 空集 cua b;⑤cua∪b=i a b。

5.交、并集運(yùn)算的性質(zhì)

①a∩a=a,a∩? = ?,a∩b=b∩a;②a∪a=a,a∪? =a,a∪b=b∪a;

③cu (a∪b)= cua∩cub,cu (a∩b)= cua∪cub;

6.有限子集的個(gè)數(shù):設(shè)集合a的元素個(gè)數(shù)是n,則a有2n個(gè)子集,2n-1個(gè)非空子集,2n-2個(gè)非空真子集。

二.例題講解:

例1已知集合m={_|_=m+ ,m∈z},n={_|_= ,n∈z},p={_|_= ,p∈z},則m,n,p滿足關(guān)系

a) m=n p b) m n=p c) m n p d) n p m

分析一:從判斷元素的共性與區(qū)別入手。

解答一:對(duì)于集合m:{_|_= ,m∈z};對(duì)于集合n:{_|_= ,n∈z}

對(duì)于集合p:{_|_= ,p∈z},由于3(n-1)+1和3p+1都表示被3除余1的數(shù),而6m+1表示被6除余1的數(shù),所以m n=p,故選b。

分析二:簡(jiǎn)單列舉集合中的元素。

解答二:m={…, ,…},n={…, , , ,…},p={…, , ,…},這時(shí)不要急于判斷三個(gè)集合間的關(guān)系,應(yīng)分析各集合中不同的元素。

= ∈n, ∈n,∴m n,又 = m,∴m n,

= p,∴n p 又 ∈n,∴p n,故p=n,所以選b。

點(diǎn)評(píng):由于思路二只是停留在最初的歸納假設(shè),沒(méi)有從理論上解決問(wèn)題,因此提倡思路一,但思路二易人手。

變式:設(shè)集合, ,則( b )

a.m=n b.m n c.n m d.

解:

當(dāng)時(shí),2k+1是奇數(shù),k+2是整數(shù),選b

例2定義集合a_b={_|_∈a且_ b},若a={1,3,5,7},b={2,3,5},則a_b的子集個(gè)數(shù)為

a)1 b)2 c)3 d)4

分析:確定集合a_b子集的個(gè)數(shù),首先要確定元素的個(gè)數(shù),然后再利用公式:集合a={a1,a2,…,an}有子集2n個(gè)來(lái)求解。

解答:∵a_b={_|_∈a且_ b}, ∴a_b={1,7},有兩個(gè)元素,故a_b的子集共有22個(gè)。選d。

變式1:已知非空集合m {1,2,3,4,5},且若a∈m,則6?a∈m,那么集合m的個(gè)數(shù)為

a)5個(gè) b)6個(gè) c)7個(gè) d)8個(gè)

變式2:已知{a,b} a {a,b,c,d,e},求集合a.

解:由已知,集合中必須含有元素a,b.

集合a可能是{a,b},{a,b,c},{a,b,d},{a,b,e},{a,b,c,d},{a,b,c,e},{a,b,d,e}.

評(píng)析本題集合a的個(gè)數(shù)實(shí)為集合{c,d,e}的真子集的個(gè)數(shù),所以共有個(gè) .

例3已知集合a={_|_2+px+q=0},b={_|_2?4_+r=0},且a∩b={1},a∪b={?2,1,3},求實(shí)數(shù)p,q,r的值。

解答:∵a∩b={1} ∴1∈b ∴12?4×1+r=0,r=3.

∴b={_|_2?4_+r=0}={1,3}, ∵a∪b={?2,1,3},?2 b, ∴?2∈a

∵a∩b={1} ∴1∈a ∴方程_2+px+q=0的兩根為-2和1,

∴ ∴

變式:已知集合a={_|_2+b_+c=0},b={_|_2+m_+6=0},且a∩b={2},a∪b=b,求實(shí)數(shù)b,c,m的值.

解:∵a∩b={2} ∴1∈b ∴22+m?2+6=0,m=-5

∴b={_|_2-5_+6=0}={2,3} ∵a∪b=b ∴

又 ∵a∩b={2} ∴a={2} ∴b=-(2+2)=4,c=2×2=4

∴b=-4,c=4,m=-5

例4已知集合a={_|(_-1)(_+1)(_+2)>0},集合b滿足:a∪b={_|_>-2},且a∩b={_|1

分析:先化簡(jiǎn)集合a,然后由a∪b和a∩b分別確定數(shù)軸上哪些元素屬于b,哪些元素不屬于b。

解答:a={_|-21}。由a∩b={_|1-2}可知[-1,1] b,而(-∞,-2)∩b=ф。

綜合以上各式有b={_|-1≤_≤5}

變式1:若a={_|_3+2_2-8_>0},b={_|_2+a_+b≤0},已知a∪b={_|_>-4},a∩b=φ,求a,b。(答案:a=-2,b=0)

點(diǎn)評(píng):在解有關(guān)不等式解集一類集合問(wèn)題,應(yīng)注意用數(shù)形結(jié)合的方法,作出數(shù)軸來(lái)解之。

變式2:設(shè)m={_|_2-2_-3=0},n={_|a_-1=0},若m∩n=n,求所有滿足條件的a的集合。

解答:m={-1,3} , ∵m∩n=n, ∴n m

①當(dāng)時(shí),a_-1=0無(wú)解,∴a=0 ②

綜①②得:所求集合為{-1,0, }

例5已知集合 ,函數(shù)y=log2(a_2-2_+2)的定義域?yàn)閝,若p∩q≠φ,求實(shí)數(shù)a的取值范圍。

分析:先將原問(wèn)題轉(zhuǎn)化為不等式a_2-2_+2>0在 有解,再利用參數(shù)分離求解。

解答:(1)若 , 在 內(nèi)有有解

令當(dāng) 時(shí),

所以a>-4,所以a的取值范圍是

變式:若關(guān)于_的方程 有實(shí)根,求實(shí)數(shù)a的取值范圍。

解答:

點(diǎn)評(píng):解決含參數(shù)問(wèn)題的題目,一般要進(jìn)行分類討論,但并不是所有的問(wèn)題都要討論,怎樣可以避免討論是我們思考此類問(wèn)題的關(guān)鍵。

高考數(shù)學(xué)知識(shí)點(diǎn)總結(jié)(四篇)

一.知識(shí)歸納:1.集合的有關(guān)概念。1)集合(集):某些指定的對(duì)象集在一起就成為一個(gè)集合(集).其中每一個(gè)對(duì)象叫元素注意:①集合與集合的元素是兩個(gè)不同的概念,教科書(shū)中是通過(guò)描述給出…
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)高考數(shù)學(xué)知識(shí)點(diǎn)信息

總結(jié)范文熱門信息