歡迎光臨管理范文網(wǎng)
當(dāng)前位置:工作總結(jié) > 總結(jié)大全 > 總結(jié)范文

高二數(shù)學(xué)知識點(diǎn)總結(jié)(十四篇)

發(fā)布時間:2023-03-21 11:03:10 查看人數(shù):10

高二數(shù)學(xué)知識點(diǎn)總結(jié)

【第1篇 高二數(shù)學(xué)知識點(diǎn)寒假復(fù)習(xí)總結(jié)

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

二、函數(shù)(30課時,12個)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

四、三角函數(shù)(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

八、圓錐曲線(18課時,7個)1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).九、(b)直線、平面、簡單何體(36課時,28個)1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項(xiàng)式定理(18課時,8個)1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì).

十一、概率(12課時,5個)1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修ⅱ(24個)

十二、概率與統(tǒng)計(jì)(14課時,6個)1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

十三、極限(12課時,6個)1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

十四、導(dǎo)數(shù)(18課時,8個)1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的值和最小值.

十五、復(fù)數(shù)(4課時,4個)1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個知識點(diǎn),從前一份試卷要考查90個知識點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對你的學(xué)習(xí)會有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積的點(diǎn),重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運(yùn)動:反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項(xiàng)式)根的個數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

【第2篇 高二數(shù)學(xué)知識點(diǎn)總結(jié):立體幾何中的線面問題

高二數(shù)學(xué)知識點(diǎn)總結(jié):立體幾何中的線面問題

一、線面問題

1、位置關(guān)系(定義)

相交:有且只有一個公共點(diǎn)

平行:在同一平面內(nèi)沒有公共點(diǎn)

異面:不同在任何一個平面內(nèi),沒有公共點(diǎn)

2、公理及推論要記憶

3、考點(diǎn)---異面直線所成角①→直角→公垂線(垂直相交)→異面直線間距離

①方法:選點(diǎn)(常選:端點(diǎn)、中點(diǎn))

平移(空間直線平面化)

還要注意總結(jié)平時習(xí)題中推出的定理,在做選擇填空時可以節(jié)省時間

二線面問題

1、位置關(guān)系(定義)

線在面內(nèi):有無數(shù)個公共點(diǎn)

線在面外:①相交:有且只有一個公共點(diǎn)

②平行:沒有公共點(diǎn)

2、線面平行

①定義:一條直線與一個平面無公共點(diǎn)(不相交),稱為直線與平面平行。

②判定定理、若a不包含于α;,b包含于α,a‖b則a‖α

③性質(zhì)定理、若a‖α,a包含于βα∩β=b則a‖b(線面平行→線線平行)

3、線面垂直

ⅰ與平行類似①定義、②判定、③性質(zhì)→點(diǎn)面距離、

ⅱ斜線射影①→線面所成角

①射影等,斜線段等

斜線段等,射影等

垂線段最短

ⅲ三垂線定理、逆定理

三面面問題類似于線面問題,交給你自己梳理吧~

_學(xué)習(xí)立體幾何時,可以用一些模型(正方體,長方體,空間四邊形,三棱錐等)幫助我們記憶公理、定理。尤其是判斷真假命題時,可以在這些模型中找出反例來幫助你判斷。

【第3篇 浙教版高二數(shù)學(xué)知識點(diǎn)總結(jié)

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

二、函數(shù)(30課時,12個)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

四、三角函數(shù)(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

八、圓錐曲線(18課時,7個)1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).

九、(b)直線、平面、簡單何體(36課時,28個)1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項(xiàng)式定理(18課時,8個)1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì).

十一、概率(12課時,5個)1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修ⅱ(24個)

十二、概率與統(tǒng)計(jì)(14課時,6個)1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

十三、極限(12課時,6個)1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

十四、導(dǎo)數(shù)(18課時,8個)1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的值和最小值.

十五、復(fù)數(shù)(4課時,4個)1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個知識點(diǎn),從前一份試卷要考查90個知識點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊?。∠嘈艑δ愕膶W(xué)習(xí)會有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積的點(diǎn),重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積。在周長一定的簡單閉曲線的集合中,圓的面積。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運(yùn)動:反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項(xiàng)式)根的個數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

【第4篇 來自于高二數(shù)學(xué)知識點(diǎn)的總結(jié)

來自于高二數(shù)學(xué)知識點(diǎn)的總結(jié)

數(shù)學(xué)網(wǎng)為大家整理了高二數(shù)學(xué)期末考試知識點(diǎn)總結(jié),供大家參考和學(xué)習(xí),希望對大家的學(xué)習(xí)和成績的提高有所幫助。

一、集合、簡易邏輯(14課時,8個)1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件.

二、函數(shù)(30課時,12個)1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例.

三、數(shù)列(12課時,5個)1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式.

四、三角函數(shù)(46課時17個)1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4,單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式’7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16余弦定理;17斜三角形解法舉例.

五、平面向量(12課時,8個)1.向量2.向量的加法與減法3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移.

六、不等式(22課時,5個)1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式.

七、直線和圓的方程(22課時,12個)1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題.9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程.

八、圓錐曲線(18課時,7個)1橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì).九、(b)直線、平面、簡單何體(36課時,28個)1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5,直線和平面垂直的判與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球.

十、排列、組合、二項(xiàng)式定理(18課時,8個)1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理.2.排列;3.排列數(shù)公式’4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì).

十一、概率(12課時,5個)1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn).選修ⅱ(24個)

十二、概率與統(tǒng)計(jì)(14課時,6個)1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的'期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸.

十三、極限(12課時,6個)1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性.

十四、導(dǎo)數(shù)(18課時,8個)1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8函數(shù)的最大值和最小值.

十五、復(fù)數(shù)(4課時,4個)1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法答案補(bǔ)充高中數(shù)學(xué)有130個知識點(diǎn),從前一份試卷要考查90個知識點(diǎn),覆蓋率達(dá)70%左右,而且把這一項(xiàng)作為衡量試卷成功與否的標(biāo)準(zhǔn)之一.這一傳統(tǒng)近年被打破,取而代之的是關(guān)注思維,突出能力,重視思想方法和思維能力的考查.現(xiàn)在的我們學(xué)數(shù)學(xué)比前人幸福啊!!相信對你的學(xué)習(xí)會有幫助的,祝你成功!答案補(bǔ)充一試全國高中數(shù)學(xué)聯(lián)賽的一試競賽大綱,完全按照全日制中學(xué)《數(shù)學(xué)教學(xué)大綱》中所規(guī)定的教學(xué)要求和內(nèi)容,即高考所規(guī)定的知識范圍和方法,在方法的要求上略有提高,其中概率和微積分初步不考。二試1、平面幾何基本要求:掌握初中數(shù)學(xué)競賽大綱所確定的所有內(nèi)容。補(bǔ)充要求:面積和面積方法。幾個重要定理:梅涅勞斯定理、塞瓦定理、托勒密定理、西姆松定理。幾個重要的極值:到三角形三頂點(diǎn)距離之和最小的點(diǎn)--費(fèi)馬點(diǎn)。到三角形三頂點(diǎn)距離的平方和最小的點(diǎn),重心。三角形內(nèi)到三邊距離之積最大的點(diǎn),重心。幾何不等式。簡單的等周問題。了解下述定理:在周長一定的n邊形的集合中,正n邊形的面積最大。在周長一定的簡單閉曲線的集合中,圓的面積最大。在面積一定的n邊形的集合中,正n邊形的周長最小。在面積一定的簡單閉曲線的集合中,圓的周長最小。幾何中的運(yùn)動:反射、平移、旋轉(zhuǎn)。復(fù)數(shù)方法、向量方法。平面凸集、凸包及應(yīng)用。答案補(bǔ)充第二數(shù)學(xué)歸納法。遞歸,一階、二階遞歸,特征方程法。函數(shù)迭代,求n次迭代,簡單的函數(shù)方程。n個變元的平均不等式,柯西不等式,排序不等式及應(yīng)用。復(fù)數(shù)的指數(shù)形式,歐拉公式,棣莫佛定理,單位根,單位根的應(yīng)用。圓排列,有重復(fù)的排列與組合,簡單的組合恒等式。一元n次方程(多項(xiàng)式)根的個數(shù),根與系數(shù)的關(guān)系,實(shí)系數(shù)方程虛根成對定理。簡單的初等數(shù)論問題,除初中大綱中所包括的內(nèi)容外,還應(yīng)包括無窮遞降法,同余,歐幾里得除法,非負(fù)最小完全剩余類,高斯函數(shù),費(fèi)馬小定理,歐拉函數(shù),孫子定理,格點(diǎn)及其性質(zhì)。3、立體幾何多面角,多面角的性質(zhì)。三面角、直三面角的基本性質(zhì)。正多面體,歐拉定理。體積證法。截面,會作截面、表面展開圖。4、平面解析幾何直線的法線式,直線的極坐標(biāo)方程,直線束及其應(yīng)用。二元一次不等式表示的區(qū)域。三角形的面積公式。圓錐曲線的切線和法線。圓的冪和根軸。

看了上文為大家整理的高二數(shù)學(xué)期末考試知識點(diǎn)總結(jié)是不是感覺輕松了許多呢?一起與同學(xué)們分享吧.

【第5篇 2023年高二數(shù)學(xué)知識點(diǎn)總結(jié)

一、集合、簡易邏輯(14課時,8個)

1.集合;2.子集;3.補(bǔ)集;4.交集;5.并集;6.邏輯連結(jié)詞;7.四種命題;8.充要條件。

二、函數(shù)(30課時,12個)

1.映射;2.函數(shù);3.函數(shù)的單調(diào)性;4.反函數(shù);5.互為反函數(shù)的函數(shù)圖象間的關(guān)系;6.指數(shù)概念的擴(kuò)充;7.有理指數(shù)冪的運(yùn)算;8.指數(shù)函數(shù);9.對數(shù);10.對數(shù)的運(yùn)算性質(zhì);11.對數(shù)函數(shù).12.函數(shù)的應(yīng)用舉例。

三、數(shù)列(12課時,5個)

1.數(shù)列;2.等差數(shù)列及其通項(xiàng)公式;3.等差數(shù)列前n項(xiàng)和公式;4.等比數(shù)列及其通頂公式;5.等比數(shù)列前n項(xiàng)和公式。

四、三角函數(shù)(46課時,17個)

1.角的概念的推廣;2.弧度制;3.任意角的三角函數(shù);4.單位圓中的三角函數(shù)線;5.同角三角函數(shù)的基本關(guān)系式;6.正弦、余弦的誘導(dǎo)公式;7.兩角和與差的正弦、余弦、正切;8.二倍角的正弦、余弦、正切;9.正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì);10.周期函數(shù);11.函數(shù)的奇偶性;12.函數(shù)的圖象;13.正切函數(shù)的圖象和性質(zhì);14.已知三角函數(shù)值求角;15.正弦定理;16.余弦定理;17.斜三角形解法舉例。

五、平面向量(12課時,8個)

1.向量;2.向量的加法與減法;3.實(shí)數(shù)與向量的積;4.平面向量的坐標(biāo)表示;5.線段的定比分點(diǎn);6.平面向量的數(shù)量積;7.平面兩點(diǎn)間的距離;8.平移。

六、不等式(22課時,5個)

1.不等式;2.不等式的基本性質(zhì);3.不等式的證明;4.不等式的解法;5.含絕對值的不等式。

七、直線和圓的方程(22課時,12個)

1.直線的傾斜角和斜率;2.直線方程的點(diǎn)斜式和兩點(diǎn)式;3.直線方程的一般式;4.兩條直線平行與垂直的條件;5.兩條直線的交角;6.點(diǎn)到直線的距離;7.用二元一次不等式表示平面區(qū)域;8.簡單線性規(guī)劃問題;9.曲線與方程的概念;10.由已知條件列出曲線方程;11.圓的標(biāo)準(zhǔn)方程和一般方程;12.圓的參數(shù)方程。

八、圓錐曲線(18課時,7個)

1.橢圓及其標(biāo)準(zhǔn)方程;2.橢圓的簡單幾何性質(zhì);3.橢圓的參數(shù)方程;4.雙曲線及其標(biāo)準(zhǔn)方程;5.雙曲線的簡單幾何性質(zhì);6.拋物線及其標(biāo)準(zhǔn)方程;7.拋物線的簡單幾何性質(zhì)。

九、直線、平面、簡單何體(36課時,28個)

1.平面及基本性質(zhì);2.平面圖形直觀圖的畫法;3.平面直線;4.直線和平面平行的判定與性質(zhì);5.直線和平面垂直的判定與性質(zhì);6.三垂線定理及其逆定理;7.兩個平面的位置關(guān)系;8.空間向量及其加法、減法與數(shù)乘;9.空間向量的坐標(biāo)表示;10.空間向量的數(shù)量積;11.直線的方向向量;12.異面直線所成的角;13.異面直線的公垂線;14.異面直線的距離;15.直線和平面垂直的性質(zhì);16.平面的法向量;17.點(diǎn)到平面的距離;18.直線和平面所成的角;19.向量在平面內(nèi)的射影;20.平面與平面平行的性質(zhì);21.平行平面間的距離;22.二面角及其平面角;23.兩個平面垂直的判定和性質(zhì);24.多面體;25.棱柱;26.棱錐;27.正多面體;28.球。

十、排列、組合、二項(xiàng)式定理(18課時,8個)

1.分類計(jì)數(shù)原理與分步計(jì)數(shù)原理;2.排列;3.排列數(shù)公式;4.組合;5.組合數(shù)公式;6.組合數(shù)的兩個性質(zhì);7.二項(xiàng)式定理;8.二項(xiàng)展開式的性質(zhì)。

十一、概率(12課時,5個)

1.隨機(jī)事件的概率;2.等可能事件的概率;3.互斥事件有一個發(fā)生的概率;4.相互獨(dú)立事件同時發(fā)生的概率;5.獨(dú)立重復(fù)試驗(yàn)。

選修ⅱ(24個)

十二、概率與統(tǒng)計(jì)(14課時,6個)

1.離散型隨機(jī)變量的分布列;2.離散型隨機(jī)變量的期望值和方差;3.抽樣方法;4.總體分布的估計(jì);5.正態(tài)分布;6.線性回歸。

十三、極限(12課時,6個)

1.數(shù)學(xué)歸納法;2.數(shù)學(xué)歸納法應(yīng)用舉例;3.數(shù)列的極限;4.函數(shù)的極限;5.極限的四則運(yùn)算;6.函數(shù)的連續(xù)性。

十四、導(dǎo)數(shù)(18課時,8個)

1.導(dǎo)數(shù)的概念;2.導(dǎo)數(shù)的幾何意義;3.幾種常見函數(shù)的導(dǎo)數(shù);4.兩個函數(shù)的和、差、積、商的導(dǎo)數(shù);5.復(fù)合函數(shù)的導(dǎo)數(shù);6.基本導(dǎo)數(shù)公式;7.利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值;8.函數(shù)的值和最小值。

十五、復(fù)數(shù)(4課時,4個)

1.復(fù)數(shù)的概念;2.復(fù)數(shù)的加法和減法;3.復(fù)數(shù)的乘法和除法;4.復(fù)數(shù)的一元二次方程和二項(xiàng)方程的解法。

【第6篇 高二數(shù)學(xué)知識點(diǎn)總結(jié):期末復(fù)習(xí)知識點(diǎn)總結(jié)

一、直線與圓:

1、直線的傾斜角 的范圍是

在平面直角坐標(biāo)系中,對于一條與 軸相交的直線 ,如果把 軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線 重合時所轉(zhuǎn)的最小正角記為, 就叫做直線的傾斜角。當(dāng)直線 與 軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(diǎn)(_1,y1),(_2,y2)的直線的斜率k=( y2-y1)/(_2-_1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn) 斜率為 ,則直線方程為 ,

⑵斜截式:直線在 軸上的截距為 和斜率,則直線方程為

4、 , ,① ∥ , ; ② .

直線 與直線 的位置關(guān)系:

(1)平行 a1/a2=b1/b2 注意檢驗(yàn)(2)垂直 a1a2+b1b2=0

5、點(diǎn) 到直線 的距離公式 ;

兩條平行線 與 的距離是

6、圓的標(biāo)準(zhǔn)方程: .⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.① 相離 ② 相切 ③ 相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形) 直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓: ①方程 (a>b>0)注意還有一個;②定義: |pf1|+|pf2|=2a>2c; ③ e= ④長軸長為2a,短軸長為2b,焦距為2c; a2=b2+c2 ;

2、雙曲線:①方程 (a,b>0) 注意還有一個;②定義: ||pf1|-|pf2||=2a<2c; ③e= ;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線 或 c2=a2+b2

3、拋物線 :①方程y2=2px注意還有三個,能區(qū)別開口方向; ②定義:|pf|=d焦點(diǎn)f( ,0),準(zhǔn)線_=- ;③焦半徑 ; 焦點(diǎn)弦=_1+_2+p;

4、直線被圓錐曲線截得的弦長公式:

5、注意解析幾何與向量結(jié)合問題:1、 , . (1) ;(2) .

2、數(shù)量積的定義:已知兩個非零向量a和b,它們的夾角為θ,則數(shù)量|a||b|cosθ叫做a與b的數(shù)量積,記作a·b,即

3、模的計(jì)算:|a|= . 算??梢韵人阆蛄康钠椒?/p>

4、向量的運(yùn)算過程中完全平方公式等照樣適用:

三、直線、平面、簡單幾何體:

1、學(xué)會三視圖的分析:

2、斜二測畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸o_、oy。畫直觀圖時,把它畫成對應(yīng)軸 o'_'、o'y'、使∠_'o'y'=45°(或135° ); (2)平行于x軸的線段長不變,平行于y軸的線段長減半.(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:s=s側(cè)+2s底;②側(cè)面積:s側(cè)= ;③體積:v=s底h

⑵錐體:①表面積:s=s側(cè)+s底;②側(cè)面積:s側(cè)= ;③體積:v= s底h:

⑶臺體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=

⑷球體:①表面積:s= ;②體積:v=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行 線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直 線面垂直 面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導(dǎo)數(shù): 導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義: 在點(diǎn) 處的導(dǎo)數(shù)記作 .

2. 導(dǎo)數(shù)的幾何物理意義:曲線 在點(diǎn) 處切線的斜率

①k=f/(_0)表示過曲線y=f(_)上p(_0,f(_0))切線斜率。v=s/(t) 表示即時速度。a=v/(t) 表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式: ① ;② ;③ ;

⑤ ;⑥ ;⑦ ;⑧ 。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù) 在某個區(qū)間內(nèi)可導(dǎo),如果 ,那么 為增函數(shù);如果 ,那么為減函數(shù);

注意:如果已知 為減函數(shù)求字母取值范圍,那么不等式 恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù) ;

②求方程 的根;

③列表:檢驗(yàn) 在方程 根的左右的符號,如果左正右負(fù),那么函數(shù) 在這個根處取得極大值;如果左負(fù)右正,那么函數(shù) 在這個根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求 的根; ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若 p則 q;⑷逆否命題:若 q則 p

注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時注意轉(zhuǎn)化。

2、注意命題的否定與否命題的區(qū)別:命題否定形式是 ;否命題是 .命題“ 或 ”的否定是“ 且 ”;“ 且 ”的否定是“ 或 ”.

3、邏輯聯(lián)結(jié)詞:

⑴且(and) :命題形式 p q; p q p q p q p

⑵或(or):命題形式 p q; 真 真 真 真 假

⑶非(not):命題形式 p . 真 假 假 真 假

假 真 假 真 真

假 假 假 假 真

“或命題”的真假特點(diǎn)是“一真即真,要假全假”;

“且命題”的真假特點(diǎn)是“一假即假,要真全真”;

“非命題”的真假特點(diǎn)是“一真一假”

4、充要條件

由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號 表示,含有存在量詞的命題,叫做存在性命題。

全稱命題p: ; 全稱命題p的否定 p:。

特稱命題p: ; 特稱命題p的否定 p:

【第7篇 高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)

導(dǎo)語高二本身的知識體系而言,它主要是對高一知識的深入和新知識模塊的補(bǔ)充。以數(shù)學(xué)為例,除去不同學(xué)校教學(xué)進(jìn)度的不同,我們會在高二接觸到更為深入的函數(shù),也將開始學(xué)習(xí)從未接觸過的復(fù)數(shù)、圓錐曲線等題型。高二頻道為你整理了《高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)》希望對你有所幫助!

高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)(一)

(1)必然事件:在條件s下,一定會發(fā)生的事件,叫相對于條件s的必然事件;

(2)不可能事件:在條件s下,一定不會發(fā)生的事件,叫相對于條件s的不可能事件;

(3)確定事件:必然事件和不可能事件統(tǒng)稱為相對于條件s的確定事件;

(4)隨機(jī)事件:在條件s下可能發(fā)生也可能不發(fā)生的事件,叫相對于條件s的隨機(jī)事件;

(5)頻數(shù)與頻率:在相同的條件s下重復(fù)n次試驗(yàn),觀察某一事件a是否出現(xiàn),稱n次試驗(yàn)中事件a出現(xiàn)的次數(shù)na為事件a出現(xiàn)的頻數(shù);稱事件a出現(xiàn)的比例fn(a)=nna為事件a出現(xiàn)的概率:對于給定的隨機(jī)事件a,如果隨著試驗(yàn)次數(shù)的增加,事件a發(fā)生的頻率fn(a)穩(wěn)定在某個常數(shù)上,把這個常數(shù)記作p(a),稱為事件a的概率。

(6)頻率與概率的區(qū)別與聯(lián)系:隨機(jī)事件的頻率,指此事件發(fā)生的次數(shù)na與試驗(yàn)總次數(shù)n的比值nna,它具有一定的穩(wěn)定性,總在某個常數(shù)附近擺動,且隨著試驗(yàn)次數(shù)的不斷增多,這種擺動幅度越來越小。我們把這個常數(shù)叫做隨機(jī)事件的概率,概率從數(shù)量上反映了隨機(jī)事件發(fā)生的可能性的大小。頻率在大量重復(fù)試驗(yàn)的前提下可以近似地作為這個事件的概率。

高二數(shù)學(xué)知識點(diǎn)歸納總結(jié)(二)

一、直線與圓:

1、直線的傾斜角的范圍是

在平面直角坐標(biāo)系中,對于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時針方向轉(zhuǎn)到和直線重合時所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時,規(guī)定傾斜角為0;

2、斜率:已知直線的傾斜角為α,且α≠90°,則斜率k=tanα.

過兩點(diǎn)(_1,y1),(_2,y2)的直線的斜率k=(y2-y1)/(_2-_1),另外切線的斜率用求導(dǎo)的方法。

3、直線方程:⑴點(diǎn)斜式:直線過點(diǎn)斜率為,則直線方程為,

⑵斜截式:直線在軸上的截距為和斜率,則直線方程為

4、直線與直線的位置關(guān)系:

(1)平行a1/a2=b1/b2注意檢驗(yàn)(2)垂直a1a2+b1b2=0

5、點(diǎn)到直線的距離公式;

兩條平行線與的距離是

6、圓的標(biāo)準(zhǔn)方程:.⑵圓的一般方程:

注意能將標(biāo)準(zhǔn)方程化為一般方程

7、過圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.

8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長問題.①相離②相切③相交

9、解決直線與圓的關(guān)系問題時,要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長

二、圓錐曲線方程:

1、橢圓:①方程(a>b>0)注意還有一個;②定義:|pf1|+|pf2|=2a>2c;③e=④長軸長為2a,短軸長為2b,焦距為2c;a2=b2+c2;

2、雙曲線:①方程(a,b>0)注意還有一個;②定義:||pf1|-|pf2||=2a<2c;③e=;④實(shí)軸長為2a,虛軸長為2b,焦距為2c;漸進(jìn)線或c2=a2+b2

3、拋物線:①方程y2=2px注意還有三個,能區(qū)別開口方向;②定義:|pf|=d焦點(diǎn)f(,0),準(zhǔn)線_=-;③焦半徑;焦點(diǎn)弦=_1+_2+p;

4、直線被圓錐曲線截得的弦長公式:

三、直線、平面、簡單幾何體:

1、學(xué)會三視圖的分析:

2、斜二測畫法應(yīng)注意的地方:

(1)在已知圖形中取互相垂直的軸o_、oy。畫直觀圖時,把它畫成對應(yīng)軸o'_'、o'y'、使∠_'o'y'=45°(或135°);

(2)平行于_軸的線段長不變,平行于y軸的線段長減半.

(3)直觀圖中的45度原圖中就是90度,直觀圖中的90度原圖一定不是90度.

3、表(側(cè))面積與體積公式:

⑴柱體:①表面積:s=s側(cè)+2s底;②側(cè)面積:s側(cè)=;③體積:v=s底h

⑵錐體:①表面積:s=s側(cè)+s底;②側(cè)面積:s側(cè)=;③體積:v=s底h:

⑶臺體①表面積:s=s側(cè)+s上底s下底②側(cè)面積:s側(cè)=

⑷球體:①表面積:s=;②體積:v=

4、位置關(guān)系的證明(主要方法):注意立體幾何證明的書寫

(1)直線與平面平行:①線線平行線面平行;②面面平行線面平行。

(2)平面與平面平行:①線面平行面面平行。

(3)垂直問題:線線垂直線面垂直面面垂直。核心是線面垂直:垂直平面內(nèi)的兩條相交直線

5、求角:(步驟-------ⅰ.找或作角;ⅱ.求角)

⑴異面直線所成角的求法:平移法:平移直線,構(gòu)造三角形;

⑵直線與平面所成的角:直線與射影所成的角

四、導(dǎo)數(shù):導(dǎo)數(shù)的意義-導(dǎo)數(shù)公式-導(dǎo)數(shù)應(yīng)用(極值最值問題、曲線切線問題)

1、導(dǎo)數(shù)的定義:在點(diǎn)處的導(dǎo)數(shù)記作.

2.導(dǎo)數(shù)的幾何物理意義:曲線在點(diǎn)處切線的斜率

①k=f/(_0)表示過曲線y=f(_)上p(_0,f(_0))切線斜率。v=s/(t)表示即時速度。a=v/(t)表示加速度。

3.常見函數(shù)的導(dǎo)數(shù)公式:①;②;③;

⑤;⑥;⑦;⑧。

4.導(dǎo)數(shù)的四則運(yùn)算法則:

5.導(dǎo)數(shù)的應(yīng)用:

(1)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性:設(shè)函數(shù)在某個區(qū)間內(nèi)可導(dǎo),如果,那么為增函數(shù);如果,那么為減函數(shù);

注意:如果已知為減函數(shù)求字母取值范圍,那么不等式恒成立。

(2)求極值的步驟:

①求導(dǎo)數(shù);

②求方程的根;

③列表:檢驗(yàn)在方程根的左右的符號,如果左正右負(fù),那么函數(shù)在這個根處取得極大值;如果左負(fù)右正,那么函數(shù)在這個根處取得極小值;

(3)求可導(dǎo)函數(shù)值與最小值的步驟:

ⅰ求的根;ⅱ把根與區(qū)間端點(diǎn)函數(shù)值比較,的為值,最小的是最小值。

五、常用邏輯用語:

1、四種命題:

⑴原命題:若p則q;⑵逆命題:若q則p;⑶否命題:若p則q;⑷逆否命題:若q則p

注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時注意轉(zhuǎn)化。

2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題“或”的否定是“且”;“且”的否定是“或”.

3、邏輯聯(lián)結(jié)詞:

⑴且(and):命題形式pq;pqpqpqp

⑵或(or):命題形式pq;真真真真假

⑶非(not):命題形式p.真假假真假

假真假真真

假假假假真

“或命題”的真假特點(diǎn)是“一真即真,要假全假”;

“且命題”的真假特點(diǎn)是“一假即假,要真全真”;

“非命題”的真假特點(diǎn)是“一真一假”

4、充要條件

由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。

5、全稱命題與特稱命題:

短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號表示。含有全體量詞的命題,叫做全稱命題。

短語“有一個”或“有些”或“至少有一個”在陳述中表示所述事物的個體或部分,邏輯中通常叫做存在量詞,并用符號表示,含有存在量詞的命題,叫做存在性命題。

【第8篇 高二數(shù)學(xué)知識點(diǎn):雙曲線方程知識點(diǎn)總結(jié)

雙曲線方程

1. 雙曲線的第一定義:

⑴①雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.

⑵①i. 焦點(diǎn)在_軸上:

頂點(diǎn): 焦點(diǎn): 準(zhǔn)線方程 漸近線方程:或

ii. 焦點(diǎn)在軸上:頂點(diǎn):. 焦點(diǎn):. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .

②軸為對稱軸,實(shí)軸長為2a, 虛軸長為2b,焦距2c. ③離心率. ④準(zhǔn)線距(兩準(zhǔn)線的距離);通徑. ⑤參數(shù)關(guān)系. ⑥焦點(diǎn)半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點(diǎn)或分別為雙曲線的上下焦點(diǎn))

“長加短減”原則:

構(gòu)成滿足(與橢圓焦半徑不同,橢圓焦半徑要帶符號計(jì)算,而雙曲線不帶符號)

⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.

⑷共軛雙曲線:以已知雙曲線的虛軸為實(shí)軸,實(shí)軸為虛軸的雙曲線,叫做已知雙曲線的共軛雙曲線.與互為共軛雙曲線,它們具有共同的漸近線:.

⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設(shè)為.

例如:若雙曲線一條漸近線為且過,求雙曲線的方程?

解:令雙曲線的方程為:,代入得.

⑹直線與雙曲線的位置關(guān)系:

區(qū)域①:無切線,2條與漸近線平行的直線,合計(jì)2條;

區(qū)域②:即定點(diǎn)在雙曲線上,1條切線,2條與漸近線平行的直線,合計(jì)3條;

區(qū)域③:2條切線,2條與漸近線平行的直線,合計(jì)4條;

區(qū)域④:即定點(diǎn)在漸近線上且非原點(diǎn),1條切線,1條與漸近線平行的直線,合計(jì)2條;

區(qū)域⑤:即過原點(diǎn),無切線,無與漸近線平行的直線.

小結(jié):過定點(diǎn)作直線與雙曲線有且僅有一個交點(diǎn),可以作出的直線數(shù)目可能有0、2、3、4條.

(2)若直線與雙曲線一支有交點(diǎn),交點(diǎn)為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.

⑺若p在雙曲線,則常用結(jié)論1:p到焦點(diǎn)的距離為m = n,則p到兩準(zhǔn)線的距離比為m︰n.

簡證: =.

常用結(jié)論2:從雙曲線一個焦點(diǎn)到另一條漸近線的距離等于b.

【第9篇 2023高二數(shù)學(xué)知識點(diǎn)總結(jié)

直線的傾斜角:

定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

直線的斜率:

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式。

注意:

(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與p1、p2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

直線方程:

1.點(diǎn)斜式:y-y0=k(_-_0)

(_0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。_是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。

2.斜截式:y=k_+b

直線的斜截式方程:y=k_+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

3.兩點(diǎn)式;(y-y1)/(y2-y1)=(_-_1)/(_2-_1)

如果_1=_2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個已知點(diǎn)了,這樣不能確定一條直線。

如果_1=_2,y1y2,那么此直線就是垂直于_軸的一條直線,其方程為_=_1,不能表示成上面的一般式。

如果_1_2,但y1=y2,那么此直線就是垂直于y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

4.截距式_/a+y/b=1

對_的截距就是y=0時,_的值,對y的截距就是_=0時,y的值。_截距為a,y截距b,截距式就是:_/a+y/b=1下面由斜截式方程推導(dǎo)y=k_+b,-k_=b-y令_=0求出y=b,令y=0求出_=-b/k所以截距a=-b/k,b=b帶入得_/a+y/b=_/(-b/k)+y/b=-k_/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;a_+by+c=0

將a_+by+c=0變換可得y=-_/b-c/b(b不為零),其中-_/b=k(斜率),c/b=‘b’(截距)。a_+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

練習(xí)題:

例:已知f(_+1)=_²+1,f(_+1)的定義域?yàn)閇0,2],求f(_)解析式和定義域

設(shè)_+1=t,則;_=t-1,那么用t表示自變量f的函數(shù)為:(也就是把_=t-1代入f(_+1)=_²+1中)

f(t)=f(_+1)=(t-1)²+1

=t²-2t+1+1

=t²-2t+2

所以,f(t)=t²-2t+2,則f(_)=_²-2_+2

或者用這樣的方法——更直觀:

令f(_+1)=_²+1中的_=_-1,這樣就更直觀了,把_=_-1代入f(_+1)=_²+1,那么:

f(_)=f[(_-1)+1]=(_-1)²+1

=_²-2_+1+1

=_²-2_+2

所以,f(_)=_²-2_+2

而f(_)與f(t)必須_與t的取值范圍相同,才是相同的函數(shù),

由t=_+1,f(_+1)的定義域?yàn)閇0,2],可知道:t∈[1,3]

f(_)=_²-2_+2的定義域?yàn)椋篲∈[1,3]

綜上所述,f(_)=_²-2_+2(_∈[1,3]

【第10篇 高二數(shù)學(xué)知識點(diǎn)整理總結(jié)

高二數(shù)學(xué)知識點(diǎn)整理總結(jié)

極值的定義:

(1)極大值:一般地,設(shè)函數(shù)f(_)在點(diǎn)_0附近有定義,如果對_0附近的所有的點(diǎn),都有f(_)

(2)極小值:一般地,設(shè)函數(shù)f(_)在_0附近有定義,如果對_0附近的所有的點(diǎn),都有f(_)>f(_0),就說f(_0)是函數(shù)f(_)的一個極小值,記作y極小值=f(_0),_0是極小值點(diǎn)。

極值的性質(zhì):

(1)極值是一個局部概念,由定義知道,極值只是某個點(diǎn)的函數(shù)值與它附近點(diǎn)的函數(shù)值比較是或最小,并不意味著它在函數(shù)的整個的定義域內(nèi)或最小;

(2)函數(shù)的極值不是的,即一個函數(shù)在某區(qū)間上或定義域內(nèi)極大值或極小值可以不止一個;

(3)極大值與極小值之間無確定的大小關(guān)系,即一個函數(shù)的極大值未必大于極小值;

(4)函數(shù)的極值點(diǎn)一定出現(xiàn)在區(qū)間的內(nèi)部,區(qū)間的端點(diǎn)不能成為極值點(diǎn),而使函數(shù)取得值、最小值的點(diǎn)可能在區(qū)間的內(nèi)部,也可能在區(qū)間的端點(diǎn)。

求函數(shù)f(_)的極值的步驟:

(1)確定函數(shù)的定義區(qū)間,求導(dǎo)數(shù)f′(_);

(2)求方程f′(_)=0的根;

(3)用函數(shù)的導(dǎo)數(shù)為0的點(diǎn),順次將函數(shù)的定義區(qū)間分成若干小開區(qū)間,并列成表格,檢查f′(_)在方程根左右的值的符號,如果左正右負(fù),那么f(_)在這個根處取得極大值;如果左負(fù)右正,那么f(_)在這個根處取得極小值;如果左右不改變符號即都為正或都為負(fù),則f(_)在這個根處無極值。

【第11篇 高二數(shù)學(xué)知識點(diǎn)總結(jié)歸納

直線的傾斜角:

定義:_軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與_軸平行或重合時,我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0°≤α<180°

直線的斜率:

①定義:傾斜角不是90°的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸的傾斜程度。

②過兩點(diǎn)的直線的斜率公式。

注意:

(1)當(dāng)時,公式右邊無意義,直線的斜率不存在,傾斜角為90°;

(2)k與p1、p2的順序無關(guān);

(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;

(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。

直線方程:

1.點(diǎn)斜式:y-y0=k(_-_0)

(_0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。_是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。

2.斜截式:y=k_+b

直線的斜截式方程:y=k_+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

3.兩點(diǎn)式;(y-y1)/(y2-y1)=(_-_1)/(_2-_1)

如果_1=_2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個已知點(diǎn)了,這樣不能確定一條直線。

如果_1=_2,y1y2,那么此直線就是垂直于_軸的一條直線,其方程為_=_1,不能表示成上面的一般式。

如果_1_2,但y1=y2,那么此直線就是垂直于y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。

4.截距式_/a+y/b=1

對_的截距就是y=0時,_的值,對y的截距就是_=0時,y的值。_截距為a,y截距b,截距式就是:_/a+y/b=1下面由斜截式方程推導(dǎo)y=k_+b,-k_=b-y令_=0求出y=b,令y=0求出_=-b/k所以截距a=-b/k,b=b帶入得_/a+y/b=_/(-b/k)+y/b=-k_/b+y/b=(b-y)/b+y/b=b/b=1。

5.一般式;a_+by+c=0

將a_+by+c=0變換可得y=-_/b-c/b(b不為零),其中-_/b=k(斜率),c/b=‘b’(截距)。a_+by+c=0在解析幾何中更常用,用方程處理起來比較方便。

【第12篇 人教版高二數(shù)學(xué)知識點(diǎn)總結(jié)

人教版高二數(shù)學(xué)知識點(diǎn)總結(jié)

在中國古代把數(shù)學(xué)叫算術(shù),又稱算學(xué),最后才改為數(shù)學(xué)。

1.任意角

(1)角的分類:

①按旋轉(zhuǎn)方向不同分為正角、負(fù)角、零角.

②按終邊位置不同分為象限角和軸線角.

(2)終邊相同的角:

終邊與角相同的角可寫成+k360(kz).

(3)弧度制:

①1弧度的角:把長度等于半徑長的弧所對的圓心角叫做1弧度的角.

②規(guī)定:正角的弧度數(shù)為正數(shù),負(fù)角的弧度數(shù)為負(fù)數(shù),零角的弧度數(shù)為零,||=,l是以角作為圓心角時所對圓弧的長,r為半徑.

③用弧度做單位來度量角的制度叫做弧度制.比值與所取的r的大小無關(guān),僅與角的大小有關(guān).

④弧度與角度的換算:360弧度;180弧度.

⑤弧長公式:l=||r,扇形面積公式:s扇形=lr=||r2.

2.任意角的三角函數(shù)

(1)任意角的三角函數(shù)定義:

設(shè)是一個任意角,角的終邊與單位圓交于點(diǎn)p(_,y),那么角的正弦、余弦、正切分別是:sin=y,cos=_,tan=,它們都是以角為自變量,以單位圓上點(diǎn)的坐標(biāo)或坐標(biāo)的比值為函數(shù)值的函數(shù).

(2)三角函數(shù)在各象限內(nèi)的符號口訣是:一全正、二正弦、三正切、四余弦.

3.三角函數(shù)線

設(shè)角的頂點(diǎn)在坐標(biāo)原點(diǎn),始邊與_軸非負(fù)半軸重合,終邊與單位圓相交于點(diǎn)p,過p作pm垂直于_軸于m.由三角函數(shù)的定義知,點(diǎn)p的坐標(biāo)為(cos_,sin_),即p(cos_,sin_),其中cos=om,sin=mp,單位圓與_軸的正半軸交于點(diǎn)a,單位圓在a點(diǎn)的切線與的終邊或其反向延長線相交于點(diǎn)t,則tan=at.我們把有向線段om、mp、at叫做的余弦線、正弦線、正切線.

【第13篇 高二數(shù)學(xué)知識點(diǎn)總結(jié):雙曲線方程典例分析

雙曲線的幾何性質(zhì)與代數(shù)中的方程、平面幾何的知識聯(lián)系密切;直線與雙曲線的交點(diǎn)問題、弦長間問題都離不開一元二次方程的判別式,韋達(dá)定理等;漸近線的夾角問題與直線的夾角公式.三角函數(shù)中的相關(guān)知識,是高考的主要內(nèi)容.

一、求雙曲線的標(biāo)準(zhǔn)方程

求雙曲線的標(biāo)準(zhǔn)方程 或 (a、b>0),通常是利用雙曲線的有關(guān)概念及性質(zhì)再 結(jié)合其它知識直接求出a、b或利用待定系數(shù)法.

例1 求與雙曲線 有公共漸近線,且過點(diǎn) 的雙曲線的共軛雙曲線方程.

解 令與雙曲線 有公共漸近線的雙曲線系方程為 ,將點(diǎn) 代入,得 ,∴雙曲線方程為 ,由共軛雙曲線的定義,可得此雙曲線的共軛雙曲線方程為 .

評 此例是“求與已知雙曲線共漸近線的雙曲線方程”類型的題.一般地,與雙曲線 有公共漸近線的雙曲線的方程可設(shè)為 (kr,且k≠0);有公共焦點(diǎn)的雙曲線方程可設(shè)為 ,本題用的是待定系數(shù)法.

例2 雙曲線的實(shí)半軸與虛半軸長的積為 ,它的兩焦點(diǎn)分別為f1、f2,直線 過f2且與直線f1f2的夾角為 ,且 , 與線段f1f2的垂直平分線的交點(diǎn)為p,線段pf2與雙曲線的交點(diǎn)為q,且 ,建立適當(dāng)?shù)淖鴺?biāo)系,求雙曲線的方程.

解 以f1f2的中點(diǎn)為原點(diǎn),f1、f2所在直線為_軸建立坐標(biāo)系,則所求雙曲線方程為 (a>0,b>0),設(shè)f2(c,0),不妨設(shè) 的方程為 ,它與y軸交點(diǎn) ,由定比分點(diǎn)坐標(biāo)公式,得q點(diǎn)的坐標(biāo)為 ,由點(diǎn)q在雙曲線上可得 ,又 ,

∴ , ,∴雙曲線方程為 .

評 此例用的是直接法.

二、雙曲線定義的應(yīng)用

1、第一定義的應(yīng)用

例3 設(shè)f1、f2為雙曲線 的兩個焦點(diǎn),點(diǎn)p在雙曲線上,且滿足∠f1pf2=900,求δf1pf2的面積.

解 由雙曲線的第一定義知, ,兩邊平方,得 .

∵∠f1pf2=900,∴ ,

∴ ,

∴ .

2、第二定義的應(yīng)用

例4 已知雙曲線 的離心率 ,左、右焦點(diǎn)分別為f1、f2,左準(zhǔn)線為l,能否在雙曲線左支上找到一點(diǎn)p,使 是 p到l的距離d與 的比例中項(xiàng)?

解 設(shè)存在點(diǎn) ,則 ,由雙曲線的第二定義,得 ,

∴ , ,又 ,

即 ,解之,得 ,

∵ ,

∴ , 矛盾,故點(diǎn)p不存在.

評 以上二例若不用雙曲線的定義得到焦半徑 、

或其關(guān)系,解題過程將復(fù)雜得多.

三、雙曲線性質(zhì)的應(yīng)用

例5 設(shè)雙曲線 ( )的半焦距為c,

直線l過(a,0)、(0,b)兩點(diǎn),已知原點(diǎn)到 的距離為 ,

求雙曲線的離心率.

解析 這里求雙曲線的離心率即求 ,是個幾何問題,怎么把

題目中的條件與之聯(lián)系起來呢?如圖1,

∵ , , ,由面積法知ab= ,考慮到 ,

知 即 ,亦即 ,注意到a

四、與雙曲線有關(guān)的軌跡問題

例6 以動點(diǎn)p為圓心的圓與⊙a(bǔ): 及⊙b: 都外切,求點(diǎn)p的軌跡方程.

解 設(shè)動點(diǎn)p(_,y),動圓半徑為r,由題意知 , , .

∴ .∴ , ,據(jù) 雙曲線的定義知,點(diǎn)p的軌跡是以a、b為焦點(diǎn)的雙曲線的右支,方程為 : .

例 7 如圖2,從雙曲線 上任一點(diǎn)q引直線 的垂線,垂足為n,求線段qn的中點(diǎn)p的軌跡方程.

解析 因點(diǎn)p隨q的運(yùn)動而運(yùn)動,而點(diǎn)q在已知雙曲線上,

故可從尋求 q點(diǎn)的坐標(biāo)與p點(diǎn)的坐標(biāo)之間的關(guān)系入手,用轉(zhuǎn)移法達(dá)到目的.

設(shè)動點(diǎn)p的坐標(biāo)為 ,點(diǎn)q的坐標(biāo)為 ,

則 n點(diǎn)的坐標(biāo)為 .

∵點(diǎn) n在直線 上,∴ ……①

又∵pq垂直于直線 ,∴ ,

即 ……②

聯(lián)立 ①、②解得 .又∵點(diǎn)n 在雙曲線 上,

∴ ,

即 ,化簡,得點(diǎn)p的軌跡方程為: .

五、與雙曲線有關(guān)的綜合題

例8 已知雙曲線 ,其左右焦點(diǎn)分別為f1、f2,直線l過其右焦點(diǎn)f2且與雙曲線 的右支交于a、b兩點(diǎn),求 的最小值.

解 設(shè) , ,( 、 ).由雙曲線的第二定義,得

, ,

∴ ,

設(shè)直線l的傾角為θ,∵l與雙曲線右支交于兩點(diǎn)a、b,∴ .

①當(dāng) 時,l的方程為 ,代入雙曲線方程得

.

由韋達(dá)定理得: .

∴ .

②當(dāng) 時,l的方程為 ,∴ ,∴ .

綜①②所述,知所求最小值為 .

【第14篇 2023高二數(shù)學(xué)知識點(diǎn)總結(jié):不等式

2023高二數(shù)學(xué)知識點(diǎn)總結(jié):不等式

解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。

高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。

證不等式的方法,實(shí)數(shù)性質(zhì)威力大。求差與0比大小,作商和1爭高下。

直接困難分析好,思路清晰綜合法。非負(fù)常用基本式,正面難則反證法。

還有重要不等式,以及數(shù)學(xué)歸納法。圖形函數(shù)來幫助,畫圖建模構(gòu)造法。

高二數(shù)學(xué)知識點(diǎn)總結(jié)(十四篇)

2016高二數(shù)學(xué)知識點(diǎn)總結(jié):不等式解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證不等式的方…
推薦度:
點(diǎn)擊下載文檔文檔為doc格式

相關(guān)高二數(shù)學(xué)知識點(diǎn)信息

  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)(十四篇)
  • 高二數(shù)學(xué)知識點(diǎn)總結(jié)(十四篇)10人關(guān)注

    2016高二數(shù)學(xué)知識點(diǎn)總結(jié):不等式解不等式的途徑,利用函數(shù)的性質(zhì)。對指無理不等式,化為有理不等式。高次向著低次代,步步轉(zhuǎn)化要等價(jià)。數(shù)形之間互轉(zhuǎn)化,幫助解答作用大。證 ...[更多]

總結(jié)范文熱門信息